

PLANNING AND CONTROL OF AUTONOMOUS VEHICLES

Prof. Vicenç Puig Advanced Control Systems Group Universitat Politècnica de Catalunya (UPC)

Autonomous Vehicle

())

4

Autonomous Vehicle

Autonomous Vehicle

00

Main Modules in Autonomous Vehicle

Introductior

Autonomous Vehicle

Control of Autonomous Vehicle

Introduction

Autonomous Vehicle

00

8

Control of Autonomous Vehicle

Introduction

Autonomous Vehicle

Elektra Autonomous Vehicle

CVC, UAB and UPC project

Autonomous Vehicle

00

Autonomous Vehicle

Kinematic and Dynamic Model

Vehicle Model

Kinematic model $\begin{cases}
\dot{x}_w = v \cdot \cos(\theta) \\
\dot{y}_w = v \cdot \sin(\theta) \\
\dot{\theta}_w = \frac{v}{a} \cdot \tan(\delta)
\end{cases}$

Dynamic model

 $\begin{cases} \dot{v} = \frac{F_{xR}\cos(\alpha) + F_{yF}\sin(\alpha - \delta) + F_{yR}\sin(\alpha) - F_{drag} - F_{friction}}{m} \\ \dot{\alpha} = \frac{-F_{xR}\sin(\alpha) + F_{yF}\cos(\alpha - \delta) + F_{yR}\cos(\alpha)}{mv} - \omega \\ \dot{\omega} = \frac{F_{yF}a\cos(\delta) + F_{yR}b}{1} \end{cases}$

Autonomous Vehicle

 \mathbf{O}

16

LPV models

• - Linear Parameter Varying (LPV) systems are linear systems whose state-space matrices are functions of some parameter vector $\theta(\tau)$:

$$\sigma .x(\tau) = A(\theta(\tau))x(\tau) + B(\theta(\tau))u(\tau)$$
$$y(\tau) = C(\theta(\tau))x(\tau) + D(\theta(\tau))u(\tau)$$

• - The LPV system is said to be *polytopic* if:

$$\begin{pmatrix} A(\theta(\tau)) & B(\theta(\tau)) \\ C(\theta(\tau)) & D(\theta(\tau)) \end{pmatrix} = \sum_{j=1}^{N} \alpha_j (\theta(\tau)) \begin{pmatrix} A_j & B_j \\ C_j & D_j \end{pmatrix}, \quad \sum_{j=1}^{N} \alpha_j (\theta(\tau)) = 1 \\ \alpha_j (\theta(\tau)) \geq 0 \quad \forall j \end{pmatrix}$$

Autonomous Vehicle

LPV Kinematic and Dynamic Model

Vehicle Model

Kinematic model

where

 $\dot{\boldsymbol{x}}_C = \boldsymbol{A}_C(\omega, v_d, \theta_e) \boldsymbol{x}_C + \boldsymbol{B}_C \boldsymbol{u}_C - \boldsymbol{B}_C \boldsymbol{r}_C$

$$\begin{split} \boldsymbol{A}_{C}\left(\boldsymbol{\omega},\boldsymbol{v}_{d},\boldsymbol{\theta}_{c}\right) &= \left[\begin{array}{ccc} 0 & \boldsymbol{\omega} & 0 \\ -\boldsymbol{\omega} & 0 & \boldsymbol{v}_{d} \frac{\sin \boldsymbol{\theta}_{e}}{\boldsymbol{\theta}_{s}} \\ 0 & 0 & 0 \end{array} \right] \\ \boldsymbol{B}_{C} &= \left[\begin{array}{cc} -1 & 0 \\ 0 & 0 \\ 0 & -1 \end{array} \right]. \end{split}$$

Dynamic model

where:

 $\dot{\boldsymbol{x}} = \boldsymbol{A}(\boldsymbol{\delta}, \boldsymbol{v}, \boldsymbol{\alpha}) \boldsymbol{x} + \boldsymbol{B}(\boldsymbol{\delta}, \boldsymbol{v}, \boldsymbol{\alpha}) \boldsymbol{u}_D + \boldsymbol{E} F_{fr}$

Autonomous Vehicle

Problems to be solved

Autonomous Vehicle

00

00

Trajectory Planning using MPC

Planning

 $\begin{array}{ll} \underset{\Delta U_k}{\text{minimize}} & \mathbf{J}_k = \sum_{i=0}^{N-1} \left(x_{k+i}^T Q \mathbf{x}_{k+i} + \Delta u_{k+i} R \Delta u_{k+i} \right) + x_{k+N}^T P \mathbf{x}_{k+N} \\ \text{subject to} & \\ & x_{k+i+1} = f(\mathbf{x}_{k+i}, u_{k+i}) \\ & u_{k+i} = u_{k+i-1} + \Delta u_{k+i} \\ & u_{k+i} = u_{k+i-1} + \Delta u_{k+i} \\ & N = L_{track}/ds \\ & \Delta U_k \in \Delta \Pi \\ & U_k \in \Pi \\ & \mathbf{x}_{k+N} \in \chi \end{array}$

Autonomous Vehicle

 $\dot{x}_{k+N} \in \Xi$

00

Trajectory Planner for Racing

Algorithm

Autonomous Vehicle

Autonomous Vehicle

00

24

Trajectory Planner in Simulation

NL-MPC kinematic planner.mp4

Autonomous Vehicle

Trajectory Planner in a Real Scenario

COMPLETED_result_Berkeley.mp4

Autonomous Vehicle

 LPV CONTROL

Automatic Control Scheme

LPV Control

Autonomous Vehicle

Automatic Control

LPV Control

Open-loop system $\dot{e} = \begin{pmatrix} \omega y_e - v_d \cos \theta_e + v \\ -\omega x_e + v_d \sin \theta_e \\ \omega_d - \omega \end{pmatrix}$ Control law $\begin{pmatrix} v \\ \omega \end{pmatrix} = -\begin{pmatrix} k_1 & 0 & -v_d \frac{\cos \theta_e}{\theta_e} \\ 0 & k_2 v_d \frac{\sin \theta_e}{\theta_e} & k_3 \end{pmatrix} \begin{pmatrix} x_e \\ y_e \\ \theta_e \end{pmatrix} + \begin{pmatrix} 0 \\ \omega_d \end{pmatrix}$

Autonomous Vehicle

00

Autonomous Vehicle

00

30

Autonomous Vehicle

and applying the transformation $K_{D_i} = W_i P^{-1}$.

Autonomous Vehicle

Elektra autonomous vehicle

Experimental Results Real vehicle diagram Perception Free space Sensors 3D Scene reconstruction Cameras Trajectory planner GPS-IMU-Obstacle detection Obstacle avoidance Encoders $\begin{bmatrix} x_{Obs} & y_{Obs} \end{bmatrix}^T$ $\begin{cases} x_{gps} \\ y_{gps} \\ \theta_{gps} \\ v_{gps} \\ v_{gps} \end{cases}$ y_{odom} θ_{odom} v_{odom} ω_{odom} Global planner st &. B [X_{Gd} Y_{Gd} 6 Elektra Localization Local planner v_{enc} Actuators $\left[\begin{matrix} \upsilon_d \\ \omega_d \\ a_d \\ \alpha_d \\ x_d \\ y_d \\ \theta_d \end{matrix} \right]$ Steer angle Speed $[v_r \quad \omega_r \quad a_r \quad \alpha_r \quad x_r \quad y_r \quad \theta_r]^T$ $[\delta v]^T$ Non-linear automatic control ECU

Elektra autonomous vehicle

00

00

Experimental Results

Elektra autonomous vehicle

00

36

Experimental Results Real test

Elektra autonomous vehicle

Experimental Results Real test

Elektra autonomous vehicle

00

38

Elektra autonomous vehicle

Integration with Learning

Autonomous Vehicle

00

Application to a real car

Autonomous Vehicle

Driverless Competition

Autonomous Vehicle

00

SEAT Autonomous Driving Challenge

Autonomous Vehicle

00

CARLA Autonomous Driving Challenge

THANK YOU!

Autonomous Vehicle

 $\langle \rangle$